Pérez-Mato, J. M., Madariaga, G. \& Elcoro, L. (1991). Solid State Commun. 78, 33-37.
Schomaker, V. \& Trueblood, K. N. (1968). Acta Cryst. B24, 63-76.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England
Steurer, W. \& Adlhart, W. (1983). Acta Cryst. B39, 349-355.

Stewart, J. M., Kruger, G. J., Ammon, H. L., Dickinson, C. \& Hall, S. R. (1972). The $X R A Y 72$ system - version of June 1972. Tech. Rep. TR-192. Computer Science Center, Univ. of Maryland, College Park, Maryland, USA.
Wolff, P. M. de, Janssen, T. \& Janner, A. (1981). Acta Cryst. A37, 625-636.
Yamamoto, A. (1982). Acta Cryst. A38, 87-92.

Structure of \boldsymbol{N}-(Dichlorophosphinoyl)phosphorimidic Trichloride, $\mathrm{Cl}_{\mathbf{3}} \mathbf{P N P (O)} \mathbf{C l}_{2}$, at 100 K

By Ferdinand Belaj
Institut für Anorganische Chemie, Universität Graz, Schubertstrasse 1, A-8010 Graz, Austria

(Received 18 June 1992; accepted 4 September 1992)
Dedicated to Professor Dr Edgar Nachbaur on the occasion of his 60 th birthday

Abstract

N -(Dichlorophosphinoyl)phosphorimidic trichloride, $\mathrm{Cl}_{3} \mathrm{PNP}(\mathrm{O}) \mathrm{Cl}_{2}, M_{r}=269.22$, monoclinic, $P 2_{1} / c, a=$ 12.573 (5),$\quad b=19.183$ (4),$\quad c=14.985$ (4) $\AA, \quad \beta=$ $110.14(2)^{\circ}, \quad V=3393(1) \AA^{3}, \quad Z=16, \quad D_{x}=$ $2.108 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\operatorname{MoK} K)=0.71069 \AA, \quad \mu=$ $2.02 \mathrm{~mm}^{-1}, \quad F(000)=2080, \quad T=100 \mathrm{~K}, \quad R=0.030$, $w R=0.032$ for 4458 unique observed reflections and 325 parameters. There are four molecules in the asymmetric unit. The $\mathrm{P}-\mathrm{N}$ bonds show a pronounced multiple-bond character, the $\mathrm{P}-\mathrm{N}$ 'double' bonds $[1.517$ (3)-1.530 (3) \AA] being substantially shorter than the $\mathrm{P}-\mathrm{N}$ 'single' bonds [1.583 (3)1.593 (3) \AA], and the $\mathrm{P}-\mathrm{Cl}$ bonds of the $\mathrm{P}(\mathrm{O}) \mathrm{Cl}_{2}$ groups [1.998 (2)-2.018 (2) \AA] are clearly longer than the $\mathrm{P}-\mathrm{Cl}$ bonds of the NPCl_{3} groups [1.956 (2)1.978 (2) \AA]. The very flexible $\mathrm{P}-\mathrm{N}-\mathrm{P}$ bond angles lie in the range $137.8(2)-144.1(2)^{\circ}$. All four molecules show approximate cisoid conformations with respect to their $\mathrm{Cl}-\mathrm{P} \cdots \mathrm{P}-\mathrm{Cl}$ and $\mathrm{Cl}-\mathrm{P} \cdots \mathrm{P}-\mathrm{O}$ torsion angles. The packing consists of layers normal to the monoclinic axis, each built up of two crystallographically independent molecules with similar environments. In opposition to this, the molecules in alternating layers show very different arrangements.

Introduction

N -(Dichlorophosphinoyl)phosphorimidic trichloride, the stable fundamental substance of neutral linear chlorophosphazenes, can be obtained by many different reactions (Becke-Goehring, Debo, Fluck \& Goetze, 1961; Becke-Goehring \& Lehr, 1961, 1963; Becke-Goehring, Mann \& Euler, 1961; Becke-

0108-7681/93/020254-05\$06.00

Goehring \& Fluck, 1966; Emsley, Moore \& Udy, 1971; Fluck, Hösle \& Zischka, 1981). The evidence of three rotamers derived from ${ }^{31} P$ NMR data (Glidewell, 1979) was disproved by semiempirical theoretical calculations (Glidewell, 1980; Glidewell, Keat \& Rycroft, 1981) and by temperaturedependent ${ }^{31} \mathrm{P}$ NMR experiments (Thomas, Scheller \& Grossmann, 1982). The ${ }^{35} \mathrm{Cl}$ NQR spectrum (Kaplansky, Clipsham \& Whitehead, 1969) shows a line splitting presumably due to crystallographic inequivalence of the Cl atoms.

An X-ray crystal structure analysis performed at room temperature was repeated at 223 K because of an extremely high degree of thermal motion in the bridging N atoms and because of a phase transition below 223 K generating a slightly different packing arrangement (Allcock, Tollefson, Arcus \& Whittle, 1985). But the results of the structure redetermination showing two molecules in the asymmetric unit are unsatisfactory, exhibiting positional disorder, very different bond lengths of equivalent bonds in the two molecules $[\mathrm{P}=\mathrm{O} 1.453$ (8) and 1.398 (10) $\AA, \mathrm{P}-\mathrm{N} 1.580$ (8) and 1.53 (2) $\AA, \mathrm{P}=\mathrm{N}$ 1.519 (8) and 1.54 (2) \AA in molecules A and B, respectively], which are unrealistic in molecule B, and gross violation of Hirshfeld's 'rigid-bond' postulate (Hirshfeld, 1976), in particular for the $\mathrm{P}-\mathrm{N}$ bonds of molecule B.

As part of a continuing study of phosphazene structures, the crystal structure of the title compound was determined at 100 K . At this temperature an ordered structure was obtained with the same spacegroup type but with a doubled cell, more accurate structural parameters and realistic thermal parameters. The asymmetric unit consists of four molecules

[^0]and thus the variability of equivalent interatomic parameters and the conformational variability of the molecule can be studied in detail.

Experimental

A colourless single crystal $(0.25 \times 0.30 \times 0.45 \mathrm{~mm})$ obtained by a Kirsanov reaction of $\mathrm{OP}(\mathrm{OH})_{2} \mathrm{NH}_{2}$ with PCl_{5} in sym- $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{4}$ (Becke-Goehring, Mann \& Euler, 1961) was immersed in oil and immediately cooled to 100 K . All the measurements were performed on a modified Stoe four-circle diffractometer using graphite-monochromatized Mo $K \alpha$ radiation with Nonius low-temperature equipment. Cell parameters were determined from a least-squares fitting of 60 well positioned reflections (2θ range $\left.10-19^{\circ}\right) .6310$ reflections were measured using $\omega-2 \theta$ scans (scan range 2.0°) for 2θ from 3 to $50^{\circ}(h 0$ to $14, k 0$ to $22, l-17$ to 17), 4723 reflections had $I>$ $3 \sigma(I), 4465$ were unique. Two standard reflections measured every 100 reflections showed $\pm 3.1 \%$ variation in intensity. The internal consistency factor was computed to $R_{\mathrm{int}}=0.0123$. Data were corrected for Lorentz-polarization effects, an empirical absorption correction (maximum/minimum transmission factors 1.158/0.852) was applied with DIFABS (Walker \& Stuart, 1983) and seven low-order reflections were omitted, probably suffering from extinction. The structure was solved by direct methods using SHELXS86 (Sheldrick, 1986). Full-matrix leastsquares refinements [on F, weighting scheme $w=$ $\left.1 / \sigma^{2}\left(F_{o}\right)\right]$ with anisotropic thermal parameters for all atoms until no parameter shifts occurred ($\Delta / \sigma \leq$ 0.002) gave $R=0.0296, w R=0.0321, S=1.59$ (4458 reflections, 325 parameters). The final difference Fourier map maximum and minimum were 0.41 and $-0.35 \mathrm{e} \AA^{-3}$, respectively. Scattering factors and anomalous-dispersion corrections were taken from International Tables for X-ray Crystallography (1974, Vol. IV, pp. 99, 149). VAX/VMS 6000 computer; programs used: SHELX76 (Sheldrick, 1976); PLATON (Spek, 1982); ORTEP (Johnson, 1965); PLUTO (Motherwell, 1976).

Discussion

The final atomic positional and thermal parameters are listed in Table $1 ; *$ the bond lengths and angles are given in Table 2. At 100 K there are four molecules in the asymmetric unit; their atom labelling is shown in Fig. 1. In the following the four molecules will be indicated by $M 1$ to $M 4$; the two molecules in

[^1]Table 1. Fractional atomic coordinates $\left(\times 10^{5}\right)$ and equivalent isotropic thermal parameters $\left(\AA^{2} \times 10^{4}\right)$ with e.s.d.'s in parentheses
$U_{\text {eq }}$ is defined as one third of the trace of the orthogonalized $U_{i j}$ tensor.

	x	y	z	$U_{\text {eq }}$
$\mathrm{P}(11)$	97908 (8)	75472 (5)	44842 (6)	141 (5)
$\mathrm{O}(1)$	99878 (22)	70021 (13)	51920 (16)	211 (15)
$\mathrm{Cl}(11)$	111397 (8)	76596 (6)	40624 (7)	309 (6)
$\mathrm{Cl}(12)$	97028 (9)	84821 (5)	50423 (7)	327 (6)
N(1)	86942 (26)	74596 (17)	35697 (20)	195 (18)
P (12)	80377 (8)	77673 (5)	26038 (6)	163 (5)
$\mathrm{Cl}(13)$	72772 (9)	86557 (5)	26194 (7)	306 (6)
$\mathrm{Cl}(14)$	68218 (8)	71260 (5)	19130 (6)	254 (5)
$\mathrm{Cl}(15)$	89170 (8)	79147 (6)	17498 (7)	308 (6)
$\mathrm{P}(21)$	47649 (8)	74700 (5)	95448 (6)	149 (5)
O(2)	49286 (22)	68311 (14)	100980 (17)	220 (15)
$\mathrm{Cl}(21)$	61643 (8)	77142 (7)	92414 (7)	342 (6)
$\mathrm{Cl}(22)$	46019 (9)	82947 (5)	103031 (7)	318 (6)
N (2)	37115 (26)	74751 (16)	85828 (20)	187 (17)
$\mathrm{P}(22)$	31258 (8)	79117 (5)	77047 (6)	151 (5)
$\mathrm{Cl}(23)$	24966 (9)	87984 (5)	79340 (7)	295 (6)
$\mathrm{Cl}(24)$	18316 (8)	73974 (5)	68483 (6)	266 (5)
$\mathrm{Cl}(25)$	40479 (8)	81378 (6)	69083 (7)	312 (6)
$\mathrm{P}(31)$	55012 (8)	101402 (5)	78016 (6)	165 (5)
$\mathrm{O}(3)$	44710 (23)	101012 (16)	80425 (19)	302 (18)
$\mathrm{Cl}(31)$	53576 (9)	96400 (5)	65961 (6)	267 (6)
$\mathrm{Cl}(32)$	58007 (9)	111150 (5)	74746 (7)	299 (6)
$\mathrm{N}(3)$	66720 (27)	98511 (17)	85176 (21)	230 (19)
$\mathrm{P}(32)$	73788 (8)	99213 (5)	95653 (6)	162 (5)
$\mathrm{Cl}(33)$	82102 (8)	108117 (5)	98969 (7)	256 (5)
$\mathrm{Cl}(34)$	85573 (8)	92021 (5)	99053 (7)	261 (6)
$\mathrm{Cl}(35)$	65596 (8)	98273 (5)	104715 (6)	230 (5)
$\mathrm{P}(41)$	2866 (8)	49528 (5)	77905 (6)	167 (5)
O (4)	-9349 (22)	50395 (14)	74405 (18)	245 (16)
$\mathrm{Cl}(41)$	10573 (9)	56499 (6)	72173 (7)	309 (6)
$\mathrm{Cl}(42)$	7427 (10)	40522 (6)	73496 (7)	375 (7)
N (4)	8828 (25)	49798 (16)	89123 (20)	185 (17)
$\mathrm{P}(42)$	20578 (8)	50239 (5)	96783 (6)	157 (5)
$\mathrm{Cl}(43)$	30225 (8)	41874 (5)	98209 (7)	237 (5)
$\mathrm{Cl}(44)$	18779 (8)	51403 (5)	109211 (6)	230 (5)
$\mathrm{Cl}(45)$	30361 (8)	57965 (5)	95597 (6)	222 (5)

the subcell determined by Allcock, Tollefson, Arcus \& Whittle (1985) will be indicated by A and B. To a very rough approximation, the molecules $M 1, M 2$ and $M 4$ show C_{s} symmetry. All the four molecules $M 1$ to $M 4$ show approximate cisoid conformations concerning their $\mathrm{Cl}-\mathrm{P} \cdots \mathrm{P}-\mathrm{Cl}$ and $\mathrm{Cl}-\mathrm{P} \cdots \mathrm{P}-\mathrm{O}$ torsion angles [maximum $11.4(1)^{\circ}$], as observed in $\left[\mathrm{Cl}_{3} \mathrm{PNPCl}_{3}\right]\left[\mathrm{PCl}_{6}\right]$ (Faggiani, Gillespie, Sawyer \& Tyrer, 1980) or in $\left[\mathrm{ClP}\left(\mathrm{NPCl}_{3}\right)_{3}\right]^{+} X^{-}, X^{-}=\mathrm{Cl}^{-}$, $\left[\mathrm{PCl}_{6}\right]^{-}$(Belaj, 1992). However, whereas the $\mathrm{O}-\mathrm{P}-\mathrm{N}-\mathrm{P}$ torsion angles are -169.1 (3) to -175.5 (3) for $M 1, M 2$ and $M 4$, in $M 3$ the $-\mathrm{P}(\mathrm{O}) \mathrm{Cl}_{2}$ group is rotated 120° about the $\mathrm{P}-\mathrm{N}$ single bond resulting in an $\mathrm{O}-\mathrm{P}-\mathrm{N}-\mathrm{P}$ torsion angle of -49.8 (4) ${ }^{\circ}$ (see Fig. 1). Nevertheless, these two conformations correspond to the conformations I and II tentatively suggested by Glidewell (1979), and explain the line splitting in the ${ }^{35} \mathrm{Cl}-\mathrm{NQR}$ spectrum (Kaplansky, Clipsham \& Whitehead, 1969).

The interatomic parameters are almost the same for $M 1$ and $M 2$ but are often somewhat different from $M 3$ and $M 4$. This can only be understood by analysing the packing of the molecules in the unit

Table 2. Bond distances (\AA), bond angles $\left({ }^{\circ}\right)$ and torsion angles $\left({ }^{\circ}\right)$ in the four molecules $M 1$ to $M 4$ of the asymmetric unit

	$n=1$	$n=2$	$n=3$	$n=4$
$\mathrm{Cl}(n 1)-\mathrm{P}(n)$)	2.015 (2)	2.018 (2)	1.998 (1)	2.010 (2)
$\mathrm{Cl}(n 2)-\mathrm{P}(n 1)$	1.998 (2)	1.999 (2)	2.001 (2)	2.003 (2)
$\mathrm{P}(n 1)-\mathrm{O}(n)$	1.449 (3)	1.454 (3)	1.461 (3)	1.452 (3)
$\mathrm{P}(n 1)-\mathrm{N}(n)$	1.583 (3)	1.587 (3)	1.593 (3)	1.588 (3)
$\mathrm{P}(n 2)-\mathrm{N}(n)$	1.517 (3)	1.519 (3)	1.520 (3)	1.530 (3)
$\mathrm{Cl}(n 3)-\mathrm{P}(n 2)$	1.958 (2)	1.956 (2)	1.975 (2)	1.978 (2)
$\mathrm{Cl}(n 4)-\mathrm{P}(n 2)$	1.958 (2)	1.957 (2)	1.959 (2)	1.964 (2)
$\mathrm{Cl}(n 5)-\mathrm{P}(n 2)$	1.978 (2)	1.977 (2)	1.975 (2)	1.973 (2)
$\mathrm{P}(n 1) \cdots \mathrm{P}(n 2)$	2.949 (2)	2.942 (2)	2.905 (2)	2.940 (2)
$\mathrm{Cl}(n)-\mathrm{P}(n \mathrm{l})-\mathrm{O}(n)$	110.9 (1)	111.2 (1)	112.8 (1)	112.0 (1)
$\mathrm{Cl}(n 2)-\mathrm{P}(n 1)-\mathrm{O}(n)$!11.2 (1)	111.4 (1)	111.5 (1)	111.5 (1)
$\mathrm{Cl}(n)-\mathrm{P}(n 1)-\mathrm{N}(n)$	108.4 (1)	108.3 (1)	102.5 (1)	108.0 (1)
$\mathrm{Cl}(n 2)-\mathrm{P}(n 1)-\mathrm{N}(n)$	107.5 (1)	107.1 (1)	106.4 (1)	107.0 (1)
$\mathrm{Cl}(n 1)-\mathrm{P}(n 1)-\mathrm{Cl}(n 2)$	102.1 (1)	102.3 (1)	101.2 (1)	101.4 (1)
$\mathrm{O}(n)-\mathrm{P}(n 1)-\mathrm{N}(n)$	115.8 (2)	115.7 (2)	120.5 (2)	115.7 (2)
$\mathrm{P}(n 1)-\mathrm{N}(n)-\mathrm{P}(n 2)$	144.1 (2)	142.6 (2)	137.8 (2)	141.1 (2)
$\mathrm{Cl}(n 3)-\mathrm{P}(n 2)-\mathrm{Cl}(n 4)$	104.9 (1)	105.0 (1)	104.8 (1)	104.8 (1)
$\mathrm{Cl}(n 3)-\mathrm{P}(n 2)-\mathrm{Cl}(n 5)$	105.5 (1)	105.8 (1)	105.2 (1)	103.9 (1)
$\mathrm{Cl}(n 4)-\mathrm{P}(n 2)-\mathrm{Cl}(n 5)$	104.8 (1)	104.1 (1)	106.5 (1)	106.2 (1)
$\mathrm{Cl}(n 3)-\mathrm{P}(n 2)-\mathrm{N}(n)$	115.8 (1)	115.6 (1)	114.0 (1)	115.7 (1)
$\mathrm{Cl}(n 4)-\mathrm{P}(n 2)-\mathrm{N}(n)$	109.2 (1)	109.6 (1)	109.1 (1)	108.7 (1)
$\mathrm{Cl}(n 5)-\mathrm{P}(n 2)-\mathrm{N}(n)$	115.5 (1)	115.7 (2)	116.4 (2)	116.4 (1)
$\mathrm{O}(n)-\mathrm{P}(n 1)-\mathrm{N}(n)-\mathrm{P}(n 2)$	-175.5 (3)	-175.3 (3)	-49.8 (4)	169.1 (3)
$\mathrm{Cl}(n 1)-\mathrm{P}(n 1)-\mathrm{N}(n)-\mathrm{P}(n 2)$	-50.1 (4)	-49.8 (4)	-176.0 (3)	-42.6 (3)
$\mathrm{Cl}(n 2)-\mathrm{P}(n 1)-\mathrm{N}(n)-\mathrm{P}(n 2)$	59.5 (4)	59.8 (4)	78.3 (3)	65.9 (3)
$\mathrm{Cl}(n 3)-\mathrm{P}(n 2)-\mathrm{N}(n)-\mathrm{P}(n 1)$	-71.0 (4)	-64.5 (4)	-76.2 (4)	-69.2 (3)
$\mathrm{Cl}(n 4)-\mathrm{P}(n 2)-\mathrm{N}(n)-\mathrm{P}(n 1)$	170.9 (3)	177.2 (3)	167.0 (3)	173.2 (3)
$\mathrm{Cl}(n 5)-\mathrm{P}(n 2)-\mathrm{N}(n)-\mathrm{P}(n 1)$	53.0 (4)	59.9 (4)	46.6 (4)	53.4 (4)
$\mathrm{Cl}(n 2)-\mathrm{P}(n) \times \mathrm{P}(n 2)-\mathrm{Cl}(n 3)$	-7.9 (1)	-1.6 (1)	5.0 (1)	0.1 (1)

cell (Fig. 2): layers normal to the monoclinic b axis formed by $M 1$ and $M 2$ (at $y \simeq \frac{1}{4}, y \simeq \frac{3}{4}$) alternate with layers formed by $M 3$ and $M 4$ (at $y \simeq 0, y \simeq \frac{1}{2}$). $M 1$ and $M 2$ are alternating but in the same orientation arranged in chains parallel to [101] with contacts between the chains. $M 3$ and $M 4$ lie around centres of symmetry and show two $\mathrm{Cl} \cdots \mathrm{O}$ interactions each (Fig. 3). Beside these six short contacts [2.854 (3) to 3.265 (3) \AA] there are six other short $\mathrm{Cl} \cdots \mathrm{O}$ contacts [2.868 (3) to 3.252 (3) \AA] between the layers [next $\mathrm{Cl} \cdots \mathrm{O}$ distance 3.436 (3) $\AA]$. Each of the Cl atoms of the NPCl_{3} groups of the four molecules is involved in just one interaction. However, the shortest intermolecular distance from the Cl atoms of the $\mathrm{P}(\mathrm{O}) \mathrm{Cl}_{2}$ group to the O atoms is 3.530 (3) \AA. Fig. 3 shows the relationship between the unit cell of the disordered structure as determined at 223 K by Allcock, Tollefson, Arcus \& Whittle (1985) and the doubled unit cell of the ordered structure at 100 K (transformation matrix $\overline{1} 0 \overline{1} / 0 \overline{1} 0 / \overline{1} 01$): molecules $M 1$ and $M 2$ of the supercell with nearly identical conformations result in the ordered molecule A; the superimposition of molecules $M 3$ and $M 4$ with rather different conformations (compare the $\mathrm{O}-\mathrm{P}-\mathrm{N}-\mathrm{P}$ torsion angles) produces the disordered molecule B in the subcell.

According to the 'rigid-bond' postulate (Hirshfeld, 1976), the difference $\Delta=\left|z_{A, B}^{2}-z_{B, A}^{2}\right|$ should be less
than about $0.001 \AA^{2}$ for every covalently bonded pair of atoms A and B, where $z_{A, B}^{2}$ denotes the meansquare amplitude of vibration of the atom A along the direction of the bond. From the vibrational parameters refined in this structure determination, maximum differences Δ of 0.0018 (7) \AA^{2} for intramolecular $\mathrm{P}-\mathrm{Cl}$ bonds and 0.0041 (17) \AA^{2} for other intramolecular bonds are obtained. Averaging the molecules $M 1$ to $M 4$, the r.m.s. values of Δ are $0.0015 \AA^{2}$ for bonded pairs of atoms, $0.0015 \AA^{2}$ for non-bonded pairs of atoms of the NPCl_{3} group and $0.0019 \AA^{2}$ for non-bonded pairs of atoms of the $\mathrm{NP}(\mathrm{O}) \mathrm{Cl}_{2}$ group, but $0.0054 \AA^{2}$ for all other nonbonded pairs of atoms within the molecules. There-

04

Fig. 1. ORTEP plots showing the atomic labelling scheme of the four molecules $M 1$ to $M 4$ of the asymmetric unit with thermal ellipsoids drawn at the 90% probability level. The PLUTO plot shows the conformational variability of the compound. The NPCl_{3} groups of the four molecules $M 1$ to $M 4$ were fitted together by minimization of the r.m.s. deviations of the atomic positions of equivalent atoms. The molecule $M 3$ is drawn with dashed bonds to indicate its different conformation.
fore, there are some internal motions within the molecules between the rigid NPCl_{3} and $\mathrm{NP}(\mathrm{O}) \mathrm{Cl}_{2}$ groups. The molecule $M 3$ shows larger r.m.s. values of Δ than the other three molecules, e.g. $0.0023 \AA^{2}$ compared with $0.0010 \AA^{2}$ for bonded pairs of atoms, owing to overlarge temperature factors of $\mathrm{N}(3)$ and $\mathrm{O}(3)$.
As expected, the $\mathrm{P}-\mathrm{N}$ bonds show a pronounced multiple-bond character and are substantially shorter than the length of an 'ideal' $\mathrm{P}-\mathrm{N}$ single bond such as the 1.800 (4) \AA found in $K\left[\mathrm{H}_{3} \mathrm{~N}-\mathrm{PO}_{3}\right]$ (Cameron, Chan \& Chute, 1980). A comparison of the bond lengths (Table 2) shows that the $\mathrm{P}-\mathrm{N}$ 'single' bond of the $\mathrm{NP}(\mathrm{O}) \mathrm{Cl}_{2}$ groups is only slightly longer and the $\mathrm{P}-\mathrm{N}$ 'double' bond of the NPCl_{3} groups is distinctly shorter than 1.575 (3) \AA, as observed in

Fig. 2. Stereographic projection of the packing of the molecules in the crystal. The atoms are drawn as spheres with arbitrary radii.

(a)

(c)

(b)

(d)

Fig. 3. Arrangement of $(a),(b)$ the molecules $M 1$ to $M 4$ in layers normal to the monoclinic axis in this structure determination, and $(c),(d)$ the molecules A and B in the subcell as determined by Allcock, Tollefson, Arcus \& Whittle (1985). (a), (c) The molecules $M 1, M 2$ and A lie in the layers at $y \simeq \frac{1}{4} .(b),(d)$ The molecules $M 3, M 4$ and B lie in the layers at $y \simeq 0$. O atoms are labelled and drawn as spheres. Dashed lines indicate short $\mathrm{Cl} \cdots \mathrm{O}$ contacts below $3.3 \AA$.
$\left(\mathrm{NPCl}_{2}\right)_{3}$ (Bullen, 1971). This is in good agreement with the $\mathrm{P}-\mathrm{N}$ distances [1.575 (2)-1.590 (3) vs $1.502(2)-1.543(2) \AA]$ found in $\left[\mathrm{ClP}\left(\mathrm{NPCl}_{3}\right)_{3}\right] \mathrm{Cl}$ and $\left[\mathrm{CIP}\left(\mathrm{NPCl}_{3}\right)_{3}\right] \mathrm{PCl}_{6} .{ }_{2} \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{4}$ (Belaj, 1992). However, in the less accurate structure determinations of the higher homologous compound $\mathrm{OP}\left(\mathrm{Cl}_{2}\right) \mathrm{NP}\left(\mathrm{Cl}_{2}\right)$ NPCl_{3} (Allcock, Tollefson, Arcus \& Whittle, 1985) and of $\operatorname{OP}\left(R_{2}\right) \mathrm{NP}\left(R_{2}\right) \mathrm{NP} R_{3}$ with $R=\mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{4}-$ $\mathrm{C}_{6} \mathrm{H}_{5}$ (Allcock, Ngo, Parvez, Whittle \& Birdsall, 1991), the $\mathrm{P}-\mathrm{N}$ bond lengths are not resolved into alternating short and long bonds.

The $\mathrm{P}=\mathrm{O}$ bond lengths agree well with the bond lengths of 1.456 (10), 1.455 (4) and 1.456 (5) \AA found in POCl_{3} (Olie, 1971), $\mathrm{CH}_{2}\left(\mathrm{POCl}_{2}\right)_{2}$ (Sheldrick, 1975) and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NHPOCl}_{2}$ (Nöth \& Storch, 1984), respectively. The $\mathrm{P}-\mathrm{Cl}$ bond lengths of the POCl_{2} groups are significantly longer and the $\mathrm{Cl}-\mathrm{P}-\mathrm{Cl}$ and $\mathrm{Cl}-\mathrm{P}-\mathrm{N}$ angles are distinctly smaller than those of the PCl_{3} groups.

A search in the Cambridge Structural Database (Allen, Kennard \& Taylor, 1983) for compounds with an acyclic $\mathrm{P}-\mathrm{N}-\mathrm{P}$ substructural fragment resulted in 405 error-free hits (R factors less than 0.1) with $\mathrm{P}-\mathrm{N}-\mathrm{P}$ bond angles lying in the range $124.8-$ 180.0°. The bulk of 376 hits involve the bis(triphenylphosphino)iminium cation $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}=\right]_{2} \mathrm{~N}^{+}$. With the single exception of the linear tetraphenylimidobis(phosphinic acid) (Nöth, 1982), all compounds with linear (7 hits) or almost linear (25 hits) $\mathrm{P}-\mathrm{N}-\mathrm{P}$ geometries (bond angles greater than 150°) contain the $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}=\right]_{2} \mathrm{~N}^{+}$cation. In two cases (Kirtley, Chanton, Love, Tipton, Sorrell \& Bau, 1980; Müller, Ha-Eierdanz, Kräuter \& Dehnicke, 1991) linear and bent ($139.1,140.2^{\circ}$) forms of this cation coexist in the same crystal. The mean value of the $\mathrm{P}-\mathrm{N}-\mathrm{P}$ angle in bent fragments is $141.3(3)^{\circ}$ with a large standard deviation of the sample of 5.1°. All the compounds with linear $\mathrm{P}-\mathrm{N}-\mathrm{P}$ geometries lie on centres of symmetry ($\overline{1}$ or $\overline{3}$), have two short $\mathrm{P}-\mathrm{N}$ distances of $1.51-1.56 \AA$ and show larger (3.03-3.11 \AA) $\mathbf{P} \ldots \mathbf{P}$ distances than the bent compounds ($2.90-3.03 \AA$). This indicates that the linearity is not simulated by a disorder of the N atoms (whose positions are always less accurately determined than the positions of the heavier P atoms) around a centre of symmetry, as assumed by Müller, Ha-Eierdanz, Kräuter \& Dehnicke (1991).

The high flexibility of the $\mathrm{P}-\mathrm{N}-\mathrm{P}$ angle suggests that packing energies may exceed the small differences in energy between the linear and the presumably more stable bent forms. This is reflected by semiempirical MNDO (modified neglect of diatomic overlap; Dewar \& Thiel, 1977), AM1 (Austin model 1; Dewar, Zoebisch, Healy \& Stewart, 1985) and MNDO-PM3 (parametric method 3; Stewart, 1989) calculations for $\mathrm{Cl}_{3} \mathrm{PNP}(\mathrm{O}) \mathrm{Cl}_{2}$, which resulted in $\mathrm{P}-\mathrm{N}-\mathrm{P}$ angles of $135.6,121.0$ and
179.5°, respectively. The local energy minima were confirmed by the calculated complete set of harmonic vibrational frequencies.

The author thanks Assistant Professor Dr C. Kratky, Institute of Physical Chemistry, University of Graz, for the use of the diffractometer.

References

Allcock, H. R., Ngo, D. C., Parvez, M., Whittle, R. R. \& Birdsall, W. J. (1991). J. Am. Chem. Soc. 113, 2628-2634.
Allcock, H. R., Tollefson, N. M., Arcus, R. A. \& Whittle, R. R. (1985). J. Am. Chem. Soc. 107, 5166-5177.

Allen, F. H., Kennard, O. \& Taylor, R. (1983). Acc. Chem. Res. 16, 146-153.
Becke-Goehring, M., Debo, A., Fluck, E. \& Goetze, W. (1961). Chem. Ber. 94, 1383-1387.
Becke-Goehring, M. \& Fluck, E. (1966). Inorg. Synth. 8, 9294.

Becke-Goehring, M. \& Lehr, W. (1961). Chem. Ber. 94, 15911594.

Becke-Goehring, M. \& Lehr, W. (1963). Z. Anorg. Allg. Chem. 325, 287-301.
Becke-Goehring, M., Mann, T. \& Euler, H. D. (1961). Chem. Ber. 94, 193-198.
Belaj, F. (1992). Acta Cryst. B48, 598-604.
Bullen, G. J. (1971). J. Chem. Soc. A, pp. 1450-1453.
Cameron, T. S., Chan, C. \& Chute, W. J. (1980). Acta Cryst. B36, 2391-2393.
Dewar, M. J. S. \& Thiel, W. (1977). J. Am. Chem. Soc. 99, 4899-4917.
Dewar, M. J. S., Zoebisch, E. G., Healy, E. F. \& Stewart, J. J. P. (1985). J. Am. Chem. Soc. 107, 3902-3909.

Emsley, J., Moore, J. \& Udy, P. B. (1971). J. Chem. Soc. A, pp. 2863-2864.
fagGiani, R., Gillesple, R. J., Sawyer, J. F. \& Tyrer, J. D. (1980). Acta Cryst. B36, 1014-1017.

Fluck, E., Hösle, R. \& Zischka, A.-K. (1981). Z. Anorg. Allg. Chem. 474, 105-112.
Glidewell, C. (1979). Inorg. Chim. Acta, 37, L523-L524.
Glidewell, C. (1980). J. Mol. Struct. 69, 265-272.
Glidewell, C., Keat, R. \& Rycroft, D. S. (1981). Inorg. Chim. Acta, 53, L231.
Hirshfeld, F. L. (1976). Acta Cryst. A32, 239-244.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Kaplansky, M., Clipsham, R. \& Whitehead, M. A. (1969). J. Chem. Soc. A, pp. 584-588.
Kirtley, S. W., Chanton, J. P., Love, R. A., Tipton, D. L., Sorrell, T. N. \& Bau, R. (1980). J. Am. Chem. Soc. 102, 3451-3460.
Motherwell, W. D. S. (1976). PLUTO. Program for ploting molecular and crystal structures. Univ. of Cambridge, England.
Müller, U., Ha-Eierdanz, M.-L., Kräuter, G. \& Dehnicke, K. (1991). Z. Naturforsch. Teil B, 46, 175-182.

Nöтн, H. (1982). Z. Naturforsch. Teil B, 37, 1491-1498.
Nöth, H. \& Storch, W. (1984). Chem. Ber. 117, 2140-2156.
Olie, K. (1971). Acta Cryst. B27, 1459-1460.
Sheldrick, G. M. (1976). SHEL $X 76$. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1986). SHELXS86. Program for the solution of crystal structures. Univ. of Göttingen, Germany.
Sheldrick, W. S. (1975). J. Chem. Soc. Dalton Trans. pp. 943-946.
SPEK, A. L. (1982). Computational Crystallography, edited by D. Sayre, p. 528. Oxford: Clarendon Press.
Stewart, J. J. P. (1989). J. Comput. Chem. 10, 209-220, 221-264.
Thomas, B., Scheller, D. \& Grossmann, G. (1982). Z. Anorg. Allg. Chem. 489, 126-130.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1993). B49, 258-266

The Modulated Structure of the Commensurate Misfit-Layer Compound (BiSe) ${ }_{1.09}$ TaSe $_{2}$

By Vaclav Petricek and Ivana Cisarova

Institute of Physics, Czechoslovak Academy of Sciences, Cukrovarnicka 10, 16200 Praha 6, Czechoslovakia

and Jan L. de Boer, Weiya Zhou,* Auke Meetsma, Gerrit A. Wiegers and Sander van Smaalen
Laboratory of Chemical Physics, Materials Science Center, University of Groningen, Nijenborgh 4, NL 9747 AG Groningen, The Netherlands

(Received 14 July 1992; accepted 23 September 1992)

Abstract

Single-crystal X-ray diffraction (Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$) was used to determine the structure of the commensurate inorganic misfit-layer compound $(\mathrm{BiSe})_{\alpha_{0}} \mathrm{TaSe}_{2}, \alpha_{0}=12 / 11 \simeq 1.09$. The struc-

^[* Present address: Institute of Physics, Chinese Academy of Sciences, PO Box 603, Beijing 100080, People’s Republic of China.]

0108-7681/93/020258-09\$06.00
ture is described as a $(3+1)$-dimensional intergrowth compound with two subsystems and with symmetry according to the superspace group $P: F m 2 m\left(\alpha_{0}, 0,0\right) \overline{1} \overline{1} 1$. The TaSe_{2} subsystem has $a_{11}=$ 3.421 (1), $a_{12}=5.970$ (1) and $a_{13}=24.341$ (7) \AA, with subsystem space group $F m 2 m$ and subsystem superspace group $\left.P: F m 2 m\left(\alpha_{0}, 0,0\right)\right\rceil 11$. The BiSe subsystem has lattice parameters $a_{21}^{\prime}=3.135(1), a_{22}^{\prime}=2.984$ (1) (c) 1993 International Union of Crystallography

[^0]: © 1993 International Union of Crystallography

[^1]: * Lists of anisotropic thermal parameters and structure factors have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55654 (11 pp.) Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: SE0101]

